Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus.

نویسندگان

  • J. F. Johnson
  • D. L. Allan
  • C. P. Vance
چکیده

Proteoid roots develop in Lupinus albus L. in response to nutrient stress, especially P. Proteoid roots excrete citrate and thus increase the availability of P, Fe, and Mn in the rhizosphere. In an effort to understand citrate synthesis and organic acid metabolism in proteoid roots of lupin, we have evaluated in vitro enzyme activities of citrate synthase (CS), malate dehydrogenase (MDH), and phosphoenolpyruvate carboxylase (PEPC) in proteoid and normal roots of plants grown with or without P. Organic acid concentrations, respiration rates, and dark 14CO2-labeling patterns were also determined. The in vitro specific activities of CS, MDH, and PEPC and in vivo dark 14CO2 fixation were higher in proteoid roots compared to normal roots, particularly under P stress. Western blot analysis showed that PEPC enzyme protein was more highly expressed in -P proteoid roots compared to other tissues. The majority of the fixed 14C was found in organic acids, predominantly malate and citrate. A larger fraction of citrate was labeled in P- stressed proteoid roots compared to other root tissue. Respiration rates of proteoid roots were 31% less than those of normal roots. The data provide evidence for increased synthesis of citrate in proteoid roots compared to normal roots, particularly under P stress. A portion of the carbon for citrate synthesis is derived from nonautotrophic CO2 fixation via PEPC in proteoid roots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency.

White lupin (Lupinus albus) adapts to phosphorus deficiency (-P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. In an effort to better understand the molecular events mediating these adaptive responses, we have isolated and sequenced 2,102 expressed sequence tags (ESTs) from cDNA libraries prepared with RNA isolated at different stages of proteo...

متن کامل

Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase.

The development of clustered tertiary lateral roots (proteoid roots) and the expression of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in roots were studied in white lupin (Lupinus albus L.) grown with either 1 mM P (+P-treated) or without P (-P-treated). The +P-treated plants initiated fewer clustered tertiary meristems and the emergence of these meristems was delayed compared with - P...

متن کامل

Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency.

White lupin (Lupinus albus) is able to adapt to phosphorus deficiency by producing proteoid roots that release a huge amount of organic acids, resulting in mobilization of sparingly soluble soil phosphate in rhizosphere. The mechanisms responsible for the release of organic acids by proteoid root cells, especially the trans-membrane transport processes, have not been elucidated. Because of high...

متن کامل

Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin.

White lupin (Lupinus albus) grown under P deficiency displays a suite of highly coordinated adaptive responses. Included among these is secretion of copious amounts of acid phosphatase (APase). Although numerous reports document that plants secrete APases in response to P deficiency, little is known of the biochemical and molecular events involved in this process. Here we characterize the secre...

متن کامل

White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases.

White lupin (Lupinus albus) is a legume that is very efficient in accessing unavailable phosphorus (Pi). It develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report, we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and GPX-PDE2) from white lupin and propose a role for these two GPX-PDEs in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 1994